::p_load(maptools, sf, raster, spatstat, tmap) pacman
Hands-On Exercise 4: 1st Order Spatial Point Patterns Analysis Methods
Installing and Loading the R Packages
Spatial Data Wrangling
Importing the Spatial Data
<- st_read("data/child-care-services-geojson.geojson") %>%
childcare_sf st_transform(crs = 3414)
Reading layer `child-care-services-geojson' from data source
`C:\Users\la935\Desktop\IS415 - GAA\IS415 - GAA (New)\Hands-On_Ex\Hands-On_Ex04\data\child-care-services-geojson.geojson'
using driver `GeoJSON'
Simple feature collection with 1545 features and 2 fields
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 103.6824 ymin: 1.248403 xmax: 103.9897 ymax: 1.462134
z_range: zmin: 0 zmax: 0
Geodetic CRS: WGS 84
<- st_read(dsn = "data", layer="CostalOutline") sg_sf
Reading layer `CostalOutline' from data source
`C:\Users\la935\Desktop\IS415 - GAA\IS415 - GAA (New)\Hands-On_Ex\Hands-On_Ex04\data'
using driver `ESRI Shapefile'
Simple feature collection with 60 features and 4 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 2663.926 ymin: 16357.98 xmax: 56047.79 ymax: 50244.03
Projected CRS: SVY21
<- st_read(dsn = "data", layer="CostalOutline") sg_sf
Reading layer `CostalOutline' from data source
`C:\Users\la935\Desktop\IS415 - GAA\IS415 - GAA (New)\Hands-On_Ex\Hands-On_Ex04\data'
using driver `ESRI Shapefile'
Simple feature collection with 60 features and 4 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 2663.926 ymin: 16357.98 xmax: 56047.79 ymax: 50244.03
Projected CRS: SVY21
<- st_read(dsn = "data",
mpsz_sf layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source
`C:\Users\la935\Desktop\IS415 - GAA\IS415 - GAA (New)\Hands-On_Ex\Hands-On_Ex04\data'
using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
Mapping the Geospatial Data Sets
tmap_mode('view')
tm_shape(childcare_sf)+
tm_dots()
tmap_mode('plot')
Geospatial Data Wrangling
Converting sf data frames to sp’s Spatial Class
<- as_Spatial(childcare_sf)
childcare <- as_Spatial(mpsz_sf)
mpsz <- as_Spatial(sg_sf) sg
childcare
class : SpatialPointsDataFrame
features : 1545
extent : 11203.01, 45404.24, 25667.6, 49300.88 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
variables : 2
names : Name, Description
min values : kml_1, <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>018989</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>1, MARINA BOULEVARD, #B1 - 01, ONE MARINA BOULEVARD, SINGAPORE 018989</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>THE LITTLE SKOOL-HOUSE INTERNATIONAL PTE. LTD.</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>08F73931F4A691F4</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
max values : kml_999, <center><table><tr><th colspan='2' align='center'><em>Attributes</em></th></tr><tr bgcolor="#E3E3F3"> <th>ADDRESSBLOCKHOUSENUMBER</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSBUILDINGNAME</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSPOSTALCODE</th> <td>829646</td> </tr><tr bgcolor=""> <th>ADDRESSSTREETNAME</th> <td>200, PONGGOL SEVENTEENTH AVENUE, SINGAPORE 829646</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSTYPE</th> <td></td> </tr><tr bgcolor=""> <th>DESCRIPTION</th> <td>Child Care Services</td> </tr><tr bgcolor="#E3E3F3"> <th>HYPERLINK</th> <td></td> </tr><tr bgcolor=""> <th>LANDXADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor="#E3E3F3"> <th>LANDYADDRESSPOINT</th> <td>0</td> </tr><tr bgcolor=""> <th>NAME</th> <td>RAFFLES KIDZ @ PUNGGOL PTE LTD</td> </tr><tr bgcolor="#E3E3F3"> <th>PHOTOURL</th> <td></td> </tr><tr bgcolor=""> <th>ADDRESSFLOORNUMBER</th> <td></td> </tr><tr bgcolor="#E3E3F3"> <th>INC_CRC</th> <td>379D017BF244B0FA</td> </tr><tr bgcolor=""> <th>FMEL_UPD_D</th> <td>20200826094036</td> </tr><tr bgcolor="#E3E3F3"> <th>ADDRESSUNITNUMBER</th> <td></td> </tr></table></center>
mpsz
class : SpatialPolygonsDataFrame
features : 323
extent : 2667.538, 56396.44, 15748.72, 50256.33 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs
variables : 15
names : OBJECTID, SUBZONE_NO, SUBZONE_N, SUBZONE_C, CA_IND, PLN_AREA_N, PLN_AREA_C, REGION_N, REGION_C, INC_CRC, FMEL_UPD_D, X_ADDR, Y_ADDR, SHAPE_Leng, SHAPE_Area
min values : 1, 1, ADMIRALTY, AMSZ01, N, ANG MO KIO, AM, CENTRAL REGION, CR, 00F5E30B5C9B7AD8, 16409, 5092.8949, 19579.069, 871.554887798, 39437.9352703
max values : 323, 17, YUNNAN, YSSZ09, Y, YISHUN, YS, WEST REGION, WR, FFCCF172717C2EAF, 16409, 50424.7923, 49552.7904, 68083.9364708, 69748298.792
sg
class : SpatialPolygonsDataFrame
features : 60
extent : 2663.926, 56047.79, 16357.98, 50244.03 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs
variables : 4
names : GDO_GID, MSLINK, MAPID, COSTAL_NAM
min values : 1, 1, 0, ISLAND LINK
max values : 60, 67, 0, SINGAPORE - MAIN ISLAND
Converting the Spatial Class into Generic sp Format
<- as(childcare, "SpatialPoints")
childcare_sp <- as(sg, "SpatialPolygons") sg_sp
childcare_sp
class : SpatialPoints
features : 1545
extent : 11203.01, 45404.24, 25667.6, 49300.88 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
sg_sp
class : SpatialPolygons
features : 60
extent : 2663.926, 56047.79, 16357.98, 50244.03 (xmin, xmax, ymin, ymax)
crs : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs
Converting the Generic sp Format into Spatstat’s ppp Format
<- as(childcare_sp, "ppp")
childcare_ppp childcare_ppp
Planar point pattern: 1545 points
window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units
plot(childcare_ppp)
summary(childcare_ppp)
Planar point pattern: 1545 points
Average intensity 1.91145e-06 points per square unit
*Pattern contains duplicated points*
Coordinates are given to 3 decimal places
i.e. rounded to the nearest multiple of 0.001 units
Window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units
(34200 x 23630 units)
Window area = 808287000 square units
Handling Duplicated Points
any(duplicated(childcare_ppp))
[1] TRUE
multiplicity(childcare_ppp)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 3 1 1 1 1 2 1 1 1 1 1 1 1
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 1 1 1 1 1 1 1 1 1 9 1 1 1 1 1
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
1 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
1 1 1 1 1 1 2 1 1 1 3 1 1 1 2 1
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
1 1 1 1 1 2 1 1 1 1 1 1 1 1 3 2
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
1 2 1 1 1 2 2 3 1 5 1 5 1 1 1 2
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
1 1 1 1 1 2 2 1 1 1 1 2 1 4 1 1
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 3
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
1 1 1 1 1 1 1 9 1 1 2 1 1 1 1 1
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
1 1 1 5 1 1 1 1 1 2 1 1 2 2 1 1
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
1 1 9 9 1 1 1 1 1 1 1 1 1 1 2 1
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
2 2 2 1 1 1 1 2 1 1 2 1 1 1 2 1
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
1 2 1 1 1 1 1 9 1 4 1 2 1 1 1 1
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
1 1 1 1 1 4 1 1 1 1 1 4 1 1 1 1
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
3 1 1 1 2 1 1 1 3 1 1 3 1 1 1 1
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
1 1 1 1 1 1 1 1 2 2 1 1 1 5 1 1
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
1 9 1 2 2 1 1 1 2 1 1 1 1 1 1 1
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
1 1 1 2 1 2 1 1 1 2 2 2 1 1 1 1
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
1 1 1 1 1 1 1 1 4 1 1 1 1 1 2 1
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
1 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 3
1537 1538 1539 1540 1541 1542 1543 1544 1545
1 1 1 1 1 1 2 1 1
sum(multiplicity(childcare_ppp) > 1)
[1] 128
tmap_mode('view')
tm_shape(childcare) +
tm_dots(alpha=0.4,
size=0.05)
tmap_mode('plot')
<- rjitter(childcare_ppp, retry=TRUE, nsim=1, drop=TRUE) childcare_ppp_jit
any(duplicated(childcare_ppp_jit))
[1] FALSE
Creating owin Object
<- as(sg_sp, "owin") sg_owin
plot(sg_owin)
summary(sg_owin)
Window: polygonal boundary
60 separate polygons (no holes)
vertices area relative.area
polygon 1 38 1.56140e+04 2.09e-05
polygon 2 735 4.69093e+06 6.27e-03
polygon 3 49 1.66986e+04 2.23e-05
polygon 4 76 3.12332e+05 4.17e-04
polygon 5 5141 6.36179e+08 8.50e-01
polygon 6 42 5.58317e+04 7.46e-05
polygon 7 67 1.31354e+06 1.75e-03
polygon 8 15 4.46420e+03 5.96e-06
polygon 9 14 5.46674e+03 7.30e-06
polygon 10 37 5.26194e+03 7.03e-06
polygon 11 53 3.44003e+04 4.59e-05
polygon 12 74 5.82234e+04 7.78e-05
polygon 13 69 5.63134e+04 7.52e-05
polygon 14 143 1.45139e+05 1.94e-04
polygon 15 165 3.38736e+05 4.52e-04
polygon 16 130 9.40465e+04 1.26e-04
polygon 17 19 1.80977e+03 2.42e-06
polygon 18 16 2.01046e+03 2.69e-06
polygon 19 93 4.30642e+05 5.75e-04
polygon 20 90 4.15092e+05 5.54e-04
polygon 21 721 1.92795e+06 2.57e-03
polygon 22 330 1.11896e+06 1.49e-03
polygon 23 115 9.28394e+05 1.24e-03
polygon 24 37 1.01705e+04 1.36e-05
polygon 25 25 1.66227e+04 2.22e-05
polygon 26 10 2.14507e+03 2.86e-06
polygon 27 190 2.02489e+05 2.70e-04
polygon 28 175 9.25904e+05 1.24e-03
polygon 29 1993 9.99217e+06 1.33e-02
polygon 30 38 2.42492e+04 3.24e-05
polygon 31 24 6.35239e+03 8.48e-06
polygon 32 53 6.35791e+05 8.49e-04
polygon 33 41 1.60161e+04 2.14e-05
polygon 34 22 2.54368e+03 3.40e-06
polygon 35 30 1.08382e+04 1.45e-05
polygon 36 327 2.16921e+06 2.90e-03
polygon 37 111 6.62927e+05 8.85e-04
polygon 38 90 1.15991e+05 1.55e-04
polygon 39 98 6.26829e+04 8.37e-05
polygon 40 415 3.25384e+06 4.35e-03
polygon 41 222 1.51142e+06 2.02e-03
polygon 42 107 6.33039e+05 8.45e-04
polygon 43 7 2.48299e+03 3.32e-06
polygon 44 17 3.28303e+04 4.38e-05
polygon 45 26 8.34758e+03 1.11e-05
polygon 46 177 4.67446e+05 6.24e-04
polygon 47 16 3.19460e+03 4.27e-06
polygon 48 15 4.87296e+03 6.51e-06
polygon 49 66 1.61841e+04 2.16e-05
polygon 50 149 5.63430e+06 7.53e-03
polygon 51 609 2.62570e+07 3.51e-02
polygon 52 8 7.82256e+03 1.04e-05
polygon 53 976 2.33447e+07 3.12e-02
polygon 54 55 8.25379e+04 1.10e-04
polygon 55 976 2.33447e+07 3.12e-02
polygon 56 61 3.33449e+05 4.45e-04
polygon 57 6 1.68410e+04 2.25e-05
polygon 58 4 9.45963e+03 1.26e-05
polygon 59 46 6.99702e+05 9.35e-04
polygon 60 13 7.00873e+04 9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
(53380 x 33890 units)
Window area = 748741000 square units
Fraction of frame area: 0.414
Combining Point Events Object and owin Object
= childcare_ppp[sg_owin] childcareSG_ppp
summary(childcareSG_ppp)
Planar point pattern: 1545 points
Average intensity 2.063463e-06 points per square unit
*Pattern contains duplicated points*
Coordinates are given to 3 decimal places
i.e. rounded to the nearest multiple of 0.001 units
Window: polygonal boundary
60 separate polygons (no holes)
vertices area relative.area
polygon 1 38 1.56140e+04 2.09e-05
polygon 2 735 4.69093e+06 6.27e-03
polygon 3 49 1.66986e+04 2.23e-05
polygon 4 76 3.12332e+05 4.17e-04
polygon 5 5141 6.36179e+08 8.50e-01
polygon 6 42 5.58317e+04 7.46e-05
polygon 7 67 1.31354e+06 1.75e-03
polygon 8 15 4.46420e+03 5.96e-06
polygon 9 14 5.46674e+03 7.30e-06
polygon 10 37 5.26194e+03 7.03e-06
polygon 11 53 3.44003e+04 4.59e-05
polygon 12 74 5.82234e+04 7.78e-05
polygon 13 69 5.63134e+04 7.52e-05
polygon 14 143 1.45139e+05 1.94e-04
polygon 15 165 3.38736e+05 4.52e-04
polygon 16 130 9.40465e+04 1.26e-04
polygon 17 19 1.80977e+03 2.42e-06
polygon 18 16 2.01046e+03 2.69e-06
polygon 19 93 4.30642e+05 5.75e-04
polygon 20 90 4.15092e+05 5.54e-04
polygon 21 721 1.92795e+06 2.57e-03
polygon 22 330 1.11896e+06 1.49e-03
polygon 23 115 9.28394e+05 1.24e-03
polygon 24 37 1.01705e+04 1.36e-05
polygon 25 25 1.66227e+04 2.22e-05
polygon 26 10 2.14507e+03 2.86e-06
polygon 27 190 2.02489e+05 2.70e-04
polygon 28 175 9.25904e+05 1.24e-03
polygon 29 1993 9.99217e+06 1.33e-02
polygon 30 38 2.42492e+04 3.24e-05
polygon 31 24 6.35239e+03 8.48e-06
polygon 32 53 6.35791e+05 8.49e-04
polygon 33 41 1.60161e+04 2.14e-05
polygon 34 22 2.54368e+03 3.40e-06
polygon 35 30 1.08382e+04 1.45e-05
polygon 36 327 2.16921e+06 2.90e-03
polygon 37 111 6.62927e+05 8.85e-04
polygon 38 90 1.15991e+05 1.55e-04
polygon 39 98 6.26829e+04 8.37e-05
polygon 40 415 3.25384e+06 4.35e-03
polygon 41 222 1.51142e+06 2.02e-03
polygon 42 107 6.33039e+05 8.45e-04
polygon 43 7 2.48299e+03 3.32e-06
polygon 44 17 3.28303e+04 4.38e-05
polygon 45 26 8.34758e+03 1.11e-05
polygon 46 177 4.67446e+05 6.24e-04
polygon 47 16 3.19460e+03 4.27e-06
polygon 48 15 4.87296e+03 6.51e-06
polygon 49 66 1.61841e+04 2.16e-05
polygon 50 149 5.63430e+06 7.53e-03
polygon 51 609 2.62570e+07 3.51e-02
polygon 52 8 7.82256e+03 1.04e-05
polygon 53 976 2.33447e+07 3.12e-02
polygon 54 55 8.25379e+04 1.10e-04
polygon 55 976 2.33447e+07 3.12e-02
polygon 56 61 3.33449e+05 4.45e-04
polygon 57 6 1.68410e+04 2.25e-05
polygon 58 4 9.45963e+03 1.26e-05
polygon 59 46 6.99702e+05 9.35e-04
polygon 60 13 7.00873e+04 9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
(53380 x 33890 units)
Window area = 748741000 square units
Fraction of frame area: 0.414
First-Order Spatial Point Patterns Analysis
Kernel Density Estimation
Computing Kernel Density Estimation Using Automatic Bandwidth Selection Method
<- density(childcareSG_ppp,
kde_childcareSG_bw sigma=bw.diggle,
edge=TRUE,
kernel="gaussian")
plot(kde_childcareSG_bw)
<- bw.diggle(childcareSG_ppp)
bw bw
sigma
298.4095
Rescalling KDE Values
<- rescale(childcareSG_ppp, 1000, "km") childcareSG_ppp.km
<- density(childcareSG_ppp.km, sigma=bw.diggle, edge=TRUE, kernel="gaussian")
kde_childcareSG.bw plot(kde_childcareSG.bw)
Working with Different Automatic Bandwidth Methods
bw.CvL(childcareSG_ppp.km)
sigma
4.543278
bw.scott(childcareSG_ppp.km)
sigma.x sigma.y
2.224898 1.450966
bw.ppl(childcareSG_ppp.km)
sigma
0.3897114
bw.diggle(childcareSG_ppp.km)
sigma
0.2984095
<- density(childcareSG_ppp.km,
kde_childcareSG.ppl sigma=bw.ppl,
edge=TRUE,
kernel="gaussian")
par(mfrow=c(1,2))
plot(kde_childcareSG.bw, main = "bw.diggle")
plot(kde_childcareSG.ppl, main = "bw.ppl")
Working with Different Kernel Methods
par(mfrow=c(2,2))
plot(density(childcareSG_ppp.km,
sigma=bw.ppl,
edge=TRUE,
kernel="gaussian"),
main="Gaussian")
plot(density(childcareSG_ppp.km,
sigma=bw.ppl,
edge=TRUE,
kernel="epanechnikov"),
main="Epanechnikov")
plot(density(childcareSG_ppp.km,
sigma=bw.ppl,
edge=TRUE,
kernel="quartic"),
main="Quartic")
plot(density(childcareSG_ppp.km,
sigma=bw.ppl,
edge=TRUE,
kernel="disc"),
main="Disc")
Fixed and Adaptive KDE
Computing KDE by Using Fixed Bandwidth
<- density(childcareSG_ppp.km, sigma=0.6, edge=TRUE, kernel="gaussian")
kde_childcareSG_600 plot(kde_childcareSG_600)
Computing KDE by Using Adaptive Bandwidth
<- adaptive.density(childcareSG_ppp.km, method="kernel")
kde_childcareSG_adaptive plot(kde_childcareSG_adaptive)
Comparing KDE Between Fixed and Adaptive
par(mfrow=c(1,2))
plot(kde_childcareSG.bw, main = "Fixed bandwidth")
plot(kde_childcareSG_adaptive, main = "Adaptive bandwidth")
Converting KDE Output into Grid Object
<- as.SpatialGridDataFrame.im(kde_childcareSG.bw)
gridded_kde_childcareSG_bw spplot(gridded_kde_childcareSG_bw)
Converting Gridded Output into Raster
<- raster(gridded_kde_childcareSG_bw) kde_childcareSG_bw_raster
kde_childcareSG_bw_raster
class : RasterLayer
dimensions : 128, 128, 16384 (nrow, ncol, ncell)
resolution : 0.4170614, 0.2647348 (x, y)
extent : 2.663926, 56.04779, 16.35798, 50.24403 (xmin, xmax, ymin, ymax)
crs : NA
source : memory
names : v
values : -8.476185e-15, 28.51831 (min, max)
Assigning Projection Systems
projection(kde_childcareSG_bw_raster) <- CRS("+init=EPSG:3414")
kde_childcareSG_bw_raster
class : RasterLayer
dimensions : 128, 128, 16384 (nrow, ncol, ncell)
resolution : 0.4170614, 0.2647348 (x, y)
extent : 2.663926, 56.04779, 16.35798, 50.24403 (xmin, xmax, ymin, ymax)
crs : +init=EPSG:3414
source : memory
names : v
values : -8.476185e-15, 28.51831 (min, max)
Visualising the Output in tmap
tm_shape(kde_childcareSG_bw_raster) +
tm_raster("v") +
tm_layout(legend.position = c("right", "bottom"), frame = FALSE)
Comparing Spatial Point Patterns Using KDE
Extracting Study Area
= mpsz[mpsz@data$PLN_AREA_N == "PUNGGOL",]
pg = mpsz[mpsz@data$PLN_AREA_N == "TAMPINES",]
tm = mpsz[mpsz@data$PLN_AREA_N == "CHOA CHU KANG",]
ck = mpsz[mpsz@data$PLN_AREA_N == "JURONG WEST",] jw
par(mfrow=c(2,2))
plot(pg, main = "Ponggol")
plot(tm, main = "Tampines")
plot(ck, main = "Choa Chu Kang")
plot(jw, main = "Jurong West")
Converting the Spatial Point Data Frame into Generic sp Format
= as(pg, "SpatialPolygons")
pg_sp = as(tm, "SpatialPolygons")
tm_sp = as(ck, "SpatialPolygons")
ck_sp = as(jw, "SpatialPolygons") jw_sp
Creating owin Object
= as(pg_sp, "owin")
pg_owin = as(tm_sp, "owin")
tm_owin = as(ck_sp, "owin")
ck_owin = as(jw_sp, "owin") jw_owin
Combining Childcare Points and the Study Area
= childcare_ppp_jit[pg_owin]
childcare_pg_ppp = childcare_ppp_jit[tm_owin]
childcare_tm_ppp = childcare_ppp_jit[ck_owin]
childcare_ck_ppp = childcare_ppp_jit[jw_owin] childcare_jw_ppp
= rescale(childcare_pg_ppp, 1000, "km")
childcare_pg_ppp.km = rescale(childcare_tm_ppp, 1000, "km")
childcare_tm_ppp.km = rescale(childcare_ck_ppp, 1000, "km")
childcare_ck_ppp.km = rescale(childcare_jw_ppp, 1000, "km") childcare_jw_ppp.km
par(mfrow=c(2,2))
plot(childcare_pg_ppp.km, main="Punggol")
plot(childcare_tm_ppp.km, main="Tampines")
plot(childcare_ck_ppp.km, main="Choa Chu Kang")
plot(childcare_jw_ppp.km, main="Jurong West")
Computing KDE
par(mfrow=c(2,2))
plot(density(childcare_pg_ppp.km,
sigma=bw.diggle,
edge=TRUE,
kernel="gaussian"),
main="Punggol")
plot(density(childcare_tm_ppp.km,
sigma=bw.diggle,
edge=TRUE,
kernel="gaussian"),
main="Tempines")
plot(density(childcare_ck_ppp.km,
sigma=bw.diggle,
edge=TRUE,
kernel="gaussian"),
main="Choa Chu Kang")
plot(density(childcare_jw_ppp.km,
sigma=bw.diggle,
edge=TRUE,
kernel="gaussian"),
main="JUrong West")
Computing Fixed Bandwidth KDE
par(mfrow=c(2,2))
plot(density(childcare_ck_ppp.km,
sigma=0.25,
edge=TRUE,
kernel="gaussian"),
main="Chou Chu Kang")
plot(density(childcare_jw_ppp.km,
sigma=0.25,
edge=TRUE,
kernel="gaussian"),
main="JUrong West")
plot(density(childcare_pg_ppp.km,
sigma=0.25,
edge=TRUE,
kernel="gaussian"),
main="Punggol")
plot(density(childcare_tm_ppp.km,
sigma=0.25,
edge=TRUE,
kernel="gaussian"),
main="Tampines")
Nearest Neighbour Analysis
Testing Spatial Point Patterns Using Clark and Evans Test
clarkevans.test(childcareSG_ppp,
correction="none",
clipregion="sg_owin",
alternative=c("clustered"),
nsim=99)
Clark-Evans test
No edge correction
Monte Carlo test based on 99 simulations of CSR with fixed n
data: childcareSG_ppp
R = 0.54756, p-value = 0.01
alternative hypothesis: clustered (R < 1)
Clark and Evan Test: Choa Chu Kang Planning Area
clarkevans.test(childcare_ck_ppp,
correction="none",
clipregion=NULL,
alternative=c("two.sided"),
nsim=999)
Clark-Evans test
No edge correction
Monte Carlo test based on 999 simulations of CSR with fixed n
data: childcare_ck_ppp
R = 1.0037, p-value = 0.372
alternative hypothesis: two-sided
Clark and Evan Test: Tampines Planning Area
clarkevans.test(childcare_tm_ppp,
correction="none",
clipregion=NULL,
alternative=c("two.sided"),
nsim=999)
Clark-Evans test
No edge correction
Monte Carlo test based on 999 simulations of CSR with fixed n
data: childcare_tm_ppp
R = 0.80374, p-value = 0.002
alternative hypothesis: two-sided